English

In vitro evaluation of efficacy of nonstarch polysaccharides enzymes on wheat by simulating the avian digestive tract

Xiaojie Yang, Xi Li, Weihan Xu, Heng Wang, Chuang Liu, Wence Wang, Lin Yang, Yongwen Zhu

 

In this study, the efficacy of different nonstarch polysaccharide (NSP) enzyme sources on wheat ingredients and wheat basal diets in vitro were evaluated by simulating the avian digestive tract. In Exp. 1, pH level was increased from 2.0 to 8.0 by simulating the avian digestive tract. The relative enzyme activities of xylanase A, B, and C and β-glucanase X at pH 3.0–3.5 were higher (P < 0.05) than those at pH 2.0 or 7.0–8.0. The optimal pH levels of 3.5 and 7.0 were screened by simulating the proventriculus and small intestine, respectively to evaluate the efficacy of NSP enzyme on wheat sources. In Exp. 2, wheat 1 contained the highest content of NSP fractions and the lowest digestibility in vitro dry matter (IVDMD) and energy (IVED) in wheat samples. Therefore, wheat 1 was selected for hydrolysis research under different NSP enzyme sources and levels (1,500, 4,500, 13,500, 40,500, 121,500 U xylanase/kg and 250, 500, 1,000, 2,000, 4,000 U β-glucanase/kg) in vitro. The hydrolysis of wheat on the basis of the released reducing sugar content was determined by xylanase sources A > B > C (P < 0.05) and β-glucanase sources of X > Y (P < 0.05). On the basis of the hydrolysis, the optimum dose of xylanase A and β-glucanase X were 40,500 U/kg and 2,000 U/kg, respectively. Subsequently, the completely randomized designs involving 2 NSP enzymes treatments × 2 endogenous digestive enzymes treatments (Exp. 3), as well as 2 wheat basal diets × 2 NSP enzymes treatments (Exp. 4) were used to evaluate the efficacy of NSP enzymes on dietary nutrient digestibility. The addition of NSP enzymes (40,500 U xylanase A/kg and 2,000 U β-glucanase X/kg) increased the IVDMD and IVED of wheat 1 without endogenous enzymes (P < 0.05), while the IVDMD and IVED of wheat 1 with endogenous enzyme were only slightly increased (P > 0.05). The addition of NSP enzymes could increase the IVDMD and IVED of corn–wheat–soybean meal diet (P < 0.05), but had no effect on those of wheat–cottonseed meal rapeseed meal diet (P > 0.05). In conclusion, xylanase and β-glucanase additions could effectively eliminate the adverse effects on wheat and wheat basal diets at the optimal pH levels of 3.5 and 7.0 by simulating the proventriculus and small intestine parts, respectively. The efficacy of NSP enzymes was influenced by the enzyme sources, dietary type, and the interaction of endogenous enzymes.



2023,JAS,101:skac334

https://doi.org/10.1093/jas/skac334


 

Registration hotline: 021-57634675

fax: 021-57632800

Copy right : 上海亘泰实业集团

Collaboration & Sponsorship: 021-57634938 57631012

ASASHotline:021-67868428

Site Map |   CNZZStatistics

address:Shanghai songjiang jiuting town nine new highway 90 lane 3 nine new commercial building 15 floor

  

WeChat ID:asaschina

The pig nutrition international BBS CSIS

- ×
Registration hotline
021-57631012
黄女士:13651764536
Collaboration & Sponsorship

021-57634938

顾先生:13564244927